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Problem motivation

Problem:

• Since the discovery of Adversarial Examples (AEs) in Deep Learning [2-3],

the Machine Learning (ML) community has devised multiple ways to

attack ML and Deep Reinforcement Learning (RL) models [4-5].

• However, the idea behind AEs is not necessarily restricted to Deep

Learning. It is about finding a perturbation that minimizes some

performance criterion.

Questions: can we model attacks for generic Markov Decision Processes

and RL? Is there a general attack framework?

Figure 1: Adversarial examples in Supervised Learning (image from [3]).
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Background: Markov Decision Processes
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Figure 2: Markov Decision Process

The discounted value of π, is

V π(s) = Ea∼π(s)[r(s, a) + γEs′∼P (s,a)[V
π(s′)]].

Suppose the policy of the agent π is fixed. How can we attack it

by perturbing the observations of the state? (→ attack at test time.)
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Optimal Attacks Formulation



Optimal adversarial attacks on the observations
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Key Idea: Use MDPs to frame the optimal attack.

The attack can be seen as a Man In The Middle attack.

• If (P, π) are known, the attack problem can be solved by means of

Value/Policy Iteration (white-box case).

• If (P, π) are unknown, we can cast the problem of finding an

optimal attack as a Reinforcement Learning problem (black-box

case, since the model is not known).
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Optimal adversarial attacks on the observations
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Define the MDP of the malicious agent M̄ = (S, S̄, P̄π, r̄π), where

S̄ = S is the set of possible actions, and

• P̄π(s′|s, s̄) = Ea∼π(·|s̄)[P (s′|s, a)] is the probability transition matrix

• r̄π(s, s̄) is the adversarial reward function.

with the constraint that s̄ satisfies d(s, s̄) ≤ ε, for some metric function

d. This represents the idea that observations should not be too far from

the original signal.
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Optimal adversarial attacks on the observations

EnvironmentEnvironment
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MaliciousagentMaliciousagent
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MainagentMainagentψ

ψ

Denote by ψ the policy of the adversarial agent, and its value V ψ.

As a consequence, the value of the policy of the main agent π changes

when affected by perturbation. Denote the value of π under a

perturbation ψ as V π◦ψ:

V π◦ψ(s) = Ea∼π(·|ψ(s))[r(s, a) + γEs′ [V π◦ψ(s′)]].
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Denote by ψ the policy of the adversarial agent, and its value V ψ.

As a consequence, the value of the policy of the main agent π changes

when affected by perturbation. Denote the value of π under a

perturbation ψ as V π◦ψ:

V π◦ψ(s) = Ea∼π(·|ψ(s))[r(s, a) + γEs′ [V π◦ψ(s′)]].

If the adversary chooses a reward r̄π(s, s̄) = −Ea∼π(·|s̄)[r(s, a)] we

find the definition of minimax attack (since we get V ψ = −V π◦ψ).
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RL Approach to find an Optimal Attack

The action space of the adversary is essentially the entire state space:

how can we deal with MDPs whose action space might be very huge?

The idea is to use RL methods with one of the following approaches

1. Features extraction: best solution (computationally). However,

how do we reconstruct the original observation from those features?

(for images this is not trivial).

2. Function Approximators: by using actor-critic methods such as

DDPG [6] or PPO [7].
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Robustness and defenses

What can the defender do?

1. First observe that any attack induces a Partially Observable

Model (POMDP). Therefore, we expect POMDP techniques to be

useful in that regard (such as using history of observations, or

recurrent neural networks).

2. We have the following proposition that bounds the effect of

the attack (one can try to find a policy π that minimizes the bound

for a specific attack ψ).

Proposition

Let the reward be bounded uniformly by R. Then, the bound on the

value of the perturbed policy π and the perturbed one π ◦ ψ is

‖V π − V π◦ψ‖∞ ≤ 2R
αε

(1− γ)2

where αε = maxs αε(s) and αε(s) = maxs̄∈As ‖π(s)− π(s̄)‖TV , with
As = {ŝ : d(s, ŝ) ≤ ε} (TV is the total variation distance).
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Simulations



Simulations: attacks using DDPG

Figure 3: Environments: MountainCar (topleft), Cartpole (topright),Continuous

MountainCar and LunarLander (bottomleft and bottomright).

• We tested the proposed attack methods on different OpenGym environments [8].

• We trained the attack using DDPG. To robustify the policy we used DRQN [9], a

technique that uses DQN with recurrent layers to deal with partial observability.

• We see an improvement when using recurrent layers. Furthermore, continuous

environments show better robustness properties. 8



Simulations: attacks using feature extraction

Figure 4: Video of the simulation: https://youtu.be/mgUdAD4Mcj4.

Atari Pong game: This is an example of feature extraction. The

algorithm extracts the center of mass (COM) of each object (bars and

ball), and chooses, using DQN, in which direction one of the objects

should moved by 1 pixel.
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Conclusion



Future work

Future work:

• Finding a more efficient way to compute optimal attacks is an

interesting venue of research.

• Evaluate attacks on complex systems (such as the HVAC unit of a

building).

• Should we focus on the problem of making the policy robust? Is it

not more efficient to find a way to detect attacks?

Thank you for listening!
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DDPG Algorithm



Practical implementation

We add a last fixed layer to the

network that projects onto the ball

centred in 0, with radius ε. This is

done by applying the function

x→ min(1, ε
‖x‖ )x to x+ e, where x

is the output before the projection

layer, and e is the exploration noise.

After this projection, we add the

state s to get the perturbed state.

Fully Connected Layer512 units
Fully Connected Layer256 units
Fully Connected Layer128 units
Fully Connected Layerdim(S) units

Projection layer
+

State

Perturbedobservation

Actor Network
ReLU

ReLU
ReLU

Tanh

Critic Network
Fully Connected Layer512 units
Fully Connected Layer256 units
Fully Connected Layer128 units
Fully Connected Layer1 unit

(Perturbed observation, State)

  Q value

ReLU

ReLU
ReLU

+ ExplorationNoise
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