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Problem motivation

• Temperature control in buildings may be

complicated.

• Data-driven control approaches: use data to directly

compute a control law.

1. Model-reference based methods: Virtual Reference

Feedback Tuning (VRFT) [1], Iterative Feedback

Tuning [2], correlation-based [3]...

2. Methods based on Willems’ et al. lemma [4,5].

• The data can be poisoned.

• We focus on VRFT, a popular model-reference based

method.
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KTH Live-in Lab Testbed
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KTH Live-in Lab Testbed

Air Handling
Unit

External air

Apartment

Sensors

Exhaust air

Measurements

- Weather cond.
- Occupants

Building

Supply air

VRFT

Ventilation
Control

1. We modeled the building using IDA-ICE, a

building performance simulation software [6].

2. We focused on the problem of ventilation

control of a single apartment.

3. We applied VRFT to derive a control law,

directly from the data of an (empty)

apartment.

4. Finally, we tested whether VRFT is

susceptible to data poisoning attacks.
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Temperature control



Virtual Reference Feedback Tuning [1]

1. Feed a pre-designed signal ut
and measure yt.
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Virtual Reference Feedback Tuning [1]

1. Feed a pre-designed signal ut
and measure yt.

2. Given a reference model Mr(z),

compute the reference signal rt.

3. Compute the virtual error

et = rt − yt.
4. Design a control law K that

outputs a signal ūt that is close

to ut.
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Virtual Reference Feedback Tuning [1]

1. Feed a pre-designed signal ut
and measure yt.

2. Given a reference model Mr(z),

compute the reference signal rt.

3. Compute the virtual error

et = rt − yt.
4. Design a control law K that

outputs a signal ūt that is close

to ut.

Under some assumptions, it is possible to show that minimizing 1
N

∑N
t=1(ūt − ut)2, for

N →∞, yields a law K that converges to the minimum of

min
K
‖Mr(z)− (1−Mr)KG(z)‖2.
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Temperature control: method

Air Handling
Unit

External air

Apartment

Sensors

Exhaust air

Measurements

- Weather cond.
- Occupants

Building

Supply air

VRFT

Ventilation
Control

1. Data was sampled every 540 [s].

2. The control signal is a real

number in [0, 1]. We designed 2

experiments for VRFT.

• Scenario A: ut ∼ N ( 1
2
, 1
6
).

• Scenario B: ut ∼ N ( 1
2
, 1).

3. Goal of VRFT: compute Kθ(z),

where Kθ(z) =
∑3
k=1 θk

z−k+2

z−1
(PID-like controller).

4. We used a 2nd order reference

model (see plot on the left).

Russo et al. (KTH) Data-Driven Control and Data-Poisoning attacks in Buildings: the KTH Live-In Lab case study, MED 2021 7



Temperature control: results

Poor tracking
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1. Scenario A: ut ∼ N ( 1
2 ,

1
6 ); Scenario B: ut ∼ N ( 1

2 , 1).

2. January was used for training of VRFT (empty apartment); February for evaluation of the

control law (1 person). For each case we run 50 simulations.

Russo et al. (KTH) Data-Driven Control and Data-Poisoning attacks in Buildings: the KTH Live-In Lab case study, MED 2021 8



Data poisoning



Attack Formulation

Figure 1: Data poisoning scheme.
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Attack Formulation

We can cast the attacker’s problem as a bi-level optimization problem.

max
u′,y′

A(u,y,K(u′,y′))

s.t. K(u′,y′) ∈ arg min
K

L(u′,y′,K)

‖u′ − u‖2 ≤ εu‖u‖2, ‖y′ − y‖2 ≤ εy‖y‖2,

• We denote by u′t = ut + au,t the poisoned input, where au is the poisoning signal

(similarly for y′t).

• We denote by L the learner’s criterion (e.g., the MSE loss of VRFT).

• Similarly, A is the attacker’s criterion.

Attack based on Russo, A., Proutiere, A.. Poisoning attacks against data-driven control methods. American

Control Conference, 2021.
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VRFT: Attack Formulation

1. Remember the VRFT criterion 1
N

∑N
t=1(ut − ūt)2, where ūt = Kθ(z)(M

−1
r (z)− 1)yt.

2. The learner’s criterion under attack can be rewritten in matrix form as

L(u′,y′, θ) =
1

N
‖u′ − Φ(y′)θ‖22

where Φ is a matrix that includes the effect of Mr(z) (ref. model) and Kθ(z).

3. How do we choose the attacker’s criterion? Simplest choice is to just maximize

the original VRFT criterion!

max
u′,y′

A(u,y, θ̂(u′,y′)) =
1

N

∥∥∥u− Φ(y)θ̂(u′,y′)
∥∥∥2
2

s.t. θ̂(u′,y′) =
(
Φ>(y′)Φ(y′)

)−1
Φ>(y′)u′

‖u′ − u‖2 ≤ εu‖u‖2, ‖y′ − y‖2 ≤ εy‖y‖2.

The problem is concave in the input signal u′, and non-convex in the output signal y′.
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VRFT: Attack Formulation

Input: Data-set (u,y); objective function A;

parameters εu, εy, η

Output: Attack vectors au,ay
i← 0, (a

(i)
u ,a

(i)
y )← (0,0)

θ̂(i) ← θ̂(u + a
(i)
u ,y + a

(i)
y )

J (i) ← A(u,y, θ̂(i))

do

a
(i+1)
u ← solve attacker’s problem in au
using CCP [9]

a
(i+1)
y ← PGA(εy, θ̂(u + a

(i+1)
u ,y + a

(i)
y ))

θ̂(i+1) ← θ̂(u + a
(i+1)
u ,y + a

(i+1)
y )

J (i+1) ← A(u,y, θ̂(i+1))

i← i+ 1

while |J (i+1) − J (i)| > η

-Remember that u′ = u + ay (resp. y′).

-The attacker wants to solve

max
u′,y′

1

N

∥∥∥u− Φ(y)θ̂(u′,y′)
∥∥∥2
2

s.t. θ̂(u′,y′) =
(
Φ>(y′)Φ(y′)

)−1
Φ>(y′)u′

‖u′ − u‖2 ≤ εu‖u‖2, ‖y′ − y‖2 ≤ εy‖y‖2.

-The problem is concave in the input signal u′:

we use convex-concave programming

techniques.

-The problem is non-convex in the output

signal y′: we use projected gradient ascent.
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Data poisoning: results

Poor tracking
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ns Scenario A – 1000 Data Points - 

Scenario B – 1000 Data Points - 

1. Scenario A: ut ∼ N ( 1
2 ,

1
6 ); Scenario B: ut ∼ N ( 1

2 , 1).

2. Each point on the left plots represents the average across 50 simulations for a specific set

of values (εu; εy), displayed on the top of each point (also the unpoisoned cases are

depicted in the plots).
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Data poisoning: original vs poisoned data
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Conclusions



Conclusions

• Data-driven control methods can be used to derive control laws directly from data.

• Data Poisoning is not a new concept in Machine Learning (see Biggio et al. [10]).

• We must pay attention to the security aspects of data-driven methods!

Thank you for listening!
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Attack Formulation

max
u′,y′

A(u,y,K(u′,y′))

s.t. K(u′,y′) ∈ arg min
K

L(u′,y′,K)

‖u′ − u‖qu ≤ δu, ‖y′ − y‖qy ≤ δy,

1. Assume the inner problem K(u′,y′) ∈ arg minK L(u′,y′,K) is convex and sufficiently

regular.

• We can perform single-level reduction [6] and replace the inner problem with its KKT

conditions.

2. Then, assume K is parameterized by θ (we will write Kθ). We can conclude that

∇θL(u′,a′,Kθ) = 0⇒ ∇au
θ = −(∇au

∇θL)(∇2
θL)−1

(similarly also for ay).

3. This allows us to find approximate attacks by using gradient ascent methods.
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