A Game Theoretic Analysis of LQG Control under Adversarial Attack

Zuxing Li, György Dán, and Dong Liu

- Deep reinforcement learning¹
 - DNN function approximator for complex control tasks
 - Wide-range of promising applications
 - Inherits vulnerability of DNN^{2,3}
- Need for adversarial reinforcement learning

¹Mnih et al., 2015. Human-level control through deep reinforcement learning.

²Szegedy et al., 2013. Intriguing properties of neural networks.

³Huang et al., 2016. Adversarial attacks on neural network policies.

State of the art

- Attack techniques: Generate adversarial examples³⁻⁵
- Defense techniques: Use perturbations in the training⁶
- Game formulations: Capture the strategic interaction
 - Variants of stochastic game⁶⁻⁸
 - Stackelberg game + POMDP or LQG^{9,10}
 - Cheap talk game + Linear dynamic system¹¹

¹¹Saritas et al., 2017. Nash and Stackelberg equilibria for dynamic cheap talk and signaling games.

³Huang et al., 2016. Adversarial attacks on neural network policies.

⁴Lin et al., 2017. Tactics of adversarial attack on deep reinforcement learning agents.

⁵Behzadan and Munir, 2017. Vulnerability of deep reinforcement learning to policy induction attacks.

⁶Pinto et al., 2017. Robust adversarial reinforcement learning.

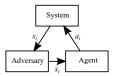
⁷ Horák et al., 2017. Manipulating adversary's belief: A dynamic game approach to deception by design for proactive network security.

⁸Gleave et al., 2020. Adversarial policies: Attacking deep reinforcement learning.

⁹Osogami, 2015. Robust partially observable Markov decision process.

 $^{^{10}}$ Sayin et al., 2019. Hierarchical multistage Gaussian signaling games in noncooperative communication and control systems.

Adversarial LQG control



• N-stage LQG:

$$\begin{split} s_{i+1} &= \alpha_i s_i + \beta_i a_i + z_i, \text{ given } \alpha_i \neq 0, \ \beta_i \neq 0 \\ \hat{s}_i &= \pi_i s_i + c_i \\ a_i &= \kappa_i \hat{s}_i + \rho_i \\ r_i &= R_i (s_i, a_i) = -\theta_i s_i^2 - \phi_i a_i^2, \text{ given } \theta_i > 0, \ \phi_i > 0 \\ S_1 &\sim b_1 \triangleq \mathcal{N}(\mu_1, \sigma_1^2), \text{ given } \mu_1, \ \sigma_1^2 > 0 \\ Z_i &\sim \mathcal{N}(0, \omega_i^2), \text{ given } \omega_i^2 > 0 \\ C_i &\sim \mathcal{N}(0, \delta_i^2) \end{split}$$

Adversarial LQG control

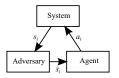
- Belief of the agent in the beginning of *i*-th stage b_i ≜ N(μ_i, σ_i²): Posterior distribution of S_i after observing {(ŝ_k, a_k)}ⁱ⁻¹_{k=1}
- Belief update $b_i \rightarrow b_{i+1}$:

$$u_{i+1} = \Lambda_{\mu}(b_i, \pi_i, \delta_i^2, \hat{s}_i, a_i) = \alpha_i \frac{\pi_i \sigma_i^2 \hat{s}_i + \mu_i \delta_i^2}{\pi_i^2 \sigma_i^2 + \delta_i^2} + \beta_i a_i$$
$$\sigma_{i+1}^2 = \Lambda_{\nu}(b_i, \pi_i, \delta_i^2) = \frac{\alpha_i^2 \sigma_i^2 \delta_i^2}{\pi_i^2 \sigma_i^2 + \delta_i^2} + \omega_i^2$$

• Adversarial manipulation constraints:

$$\begin{split} & -\infty < \varepsilon' \leq \pi_i \leq \varepsilon < \infty, \text{ given } \varepsilon', \ \varepsilon \\ & I(\hat{S}_i;S_i) = \frac{1}{2}\log \frac{\pi_i^2 \sigma_i^2 + \delta_i^2}{\delta_i^2} \geq \frac{1}{2}\log \lambda > 0, \text{ given } \lambda > 1 \end{split}$$

Adversarial LQG control

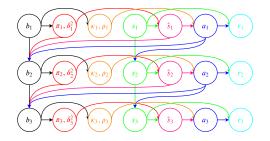


- Asymmetric information
 - The adversary manipulates the system states.
 - The agent chooses actions based on the manipulated observations.
- Conflicting objectives
 - The agent aims at improving the control reward.
 - The adversary aims at degrading the control reward.

Question

How to formulate the interaction of players with asymmetric information in an LQG control?

Adversarial LQG game



• In the beginning of the *i*-th stage

- Adversarial strategy: $g_i(\pi_i, \delta_i^2 | b_i)$ or $(\pi_i, \delta_i^2) = g_i(b_i)$
- Agent strategy: $f_i(\kappa_i,
 ho_i | b_i)$ or $(\kappa_i,
 ho_i) = f_i(b_i)$
- Running follows the LQG equations
- In the end of the *i*-th stage
 - Adversary reveals the chosen parameters (π_i, δ_i^2) to the agent
 - Both players update the next belief b_{i+1}

Subgame perfect equilibrium

 $\bullet~{\rm Strategies}~(g^{N*},f^{N*})$ form an SPE.

• Value function of a subgame starting from the *i*-th stage:

$$V_i^N(b_i) = E_{b_i, g_i^{N*}, f_i^{N*}} \left(\sum_{j=i}^N R_j(S_j, A_j) \right)$$

Backward dynamic programming:

$$\begin{aligned} V_i^N(b_i) &= \min_{g_i} E_{b_i,g_i,f_i^*} \{ R_i(S_i, A_i) \\ &+ V_{i+1}^N(\mathcal{N}(\Lambda_\mu(b_i, \Pi_i, \Delta_i^2, \hat{S}_i, A_i), \Lambda_\nu(b_i, \Pi_i, \Delta_i^2))) \} \\ &= \max_{f_i} E_{b_i,g_i^*,f_i} \{ R_i(S_i, A_i) \\ &+ V_{i+1}^N(\mathcal{N}(\Lambda_\mu(b_i, \Pi_i, \Delta_i^2, \hat{S}_i, A_i), \Lambda_\nu(b_i, \Pi_i, \Delta_i^2))) \} \end{aligned}$$

Proposition 1

Let N = 1. An SPE *always exists* and consists of (f_1^*, g_1^*) , where $(\kappa_1^*, \rho_1^*) = f_1^*(b_1) = (0, 0)$ for any belief b_1 ; and g_1^* can be any adversarial strategy subject to constraints.

Pure strategy equilibria

Theorem 1

Let $N \geq 2$. If $\varepsilon' \neq \varepsilon$ or if $\varepsilon' = \varepsilon = 0$, then there is *no* pure strategy SPE for the ALQG game. If $\varepsilon' = \varepsilon \neq 0$, then there is a *unique* pure strategy SPE. The SPE strategies for $1 \leq i \leq N$ are given by

$$\begin{split} \tilde{\theta}_{N+1} &= \hat{\theta}_{N+1} = 0; \\ \tilde{\theta}_i &= \theta_i + \tilde{\theta}_{i+1} \alpha_i^2 - \frac{\tilde{\theta}_{i+1}^2 \alpha_i^2 \beta_i^2}{\phi_i + \tilde{\theta}_{i+1} \beta_i^2}; \\ \hat{\theta}_i &= \theta_i + \hat{\theta}_{i+1} \alpha_i^2 - \left(\frac{\tilde{\theta}_{i+1}^2 \alpha_i^2 \beta_i^2}{\phi_i + \tilde{\theta}_{i+1} \beta_i^2} + (\hat{\theta}_{i+1} - \tilde{\theta}_{i+1}) \alpha_i^2\right) \frac{\lambda - 1}{\lambda}; \\ \left(\pi_i^*, \delta_i^{2*}\right) &= g_i^*(b_i) = \left(\varepsilon, \frac{\varepsilon^2 \sigma_i^2}{\lambda - 1}\right); \\ \left(\kappa_i^*, \rho_i^*\right) &= f_i^*(b_i) = \left(-\frac{\tilde{\theta}_{i+1} \alpha_i \beta_i (\lambda - 1)}{(\phi_i + \tilde{\theta}_{i+1} \beta_i^2) \lambda \varepsilon}, -\frac{\tilde{\theta}_{i+1} \alpha_i \beta_i \mu_i}{(\phi_i + \tilde{\theta}_{i+1} \beta_i^2) \lambda}\right). \end{split}$$

Corollary 1

If $\varepsilon'=\varepsilon\neq 0,$ the value function induced by the unique pure strategy SPE is

$$V_i^N(b_i) = -\tilde{\theta}_i \mu_i^2 - \hat{\theta}_i \sigma_i^2 - \sum_{j=i+1}^N \hat{\theta}_j \omega_{j-1}^2.$$

Observations

- A rational adversary will always apply a manipulation with the largest variance.
- The value function V_i^N consists of two separable terms of μ_i and σ_i^2 .

- Time-invariant parameters: $\alpha_i = \alpha \neq 0$, $\beta_i = \beta \neq 0$, $\omega_i^2 = \omega^2 > 0$, $\theta_i = \theta > 0$, and $\phi_i = \phi > 0$ for $i \ge 1$
- $\bullet~$ Define the mapping $L:\mathbb{R}^2_{\geq 0}\to\mathbb{R}^2_{\geq 0}$ as

$$L\left(x,y\right) = \left(\theta + \frac{\phi\alpha^{2}x}{\phi + \beta^{2}x}, \theta + \frac{\phi\alpha^{2}x}{\phi + \beta^{2}x}\frac{\lambda - 1}{\lambda} + \alpha^{2}y\frac{1}{\lambda}\right).$$

Proposition 2

Let $\lambda > \alpha^2$. Then the mapping L admits a least fixed point $(\tilde{\theta}, \hat{\theta}) \in \mathbb{R}^2_{\geq 0}$, for which

$$\lim_{n \to \infty} L^n(0,0) = L(\tilde{\theta}, \hat{\theta}) = (\tilde{\theta}, \hat{\theta}).$$

IEEE CDC 2020 A Game Theoretic Analysis of LQG Control under Adversarial Attack Dec. 15th, 2020 12 / 22

Theorem 2

Let $\lambda > \alpha^2$, $\varepsilon' = \varepsilon \neq 0$, and $N \to \infty$. Then the ALQG game of the time-invariant model has a stationary SPE in pure strategies as: For $i \ge 1$,

$$\begin{pmatrix} \pi_i^*, \delta_i^{2*} \end{pmatrix} = g_i^*(b_i) = \left(\varepsilon, \frac{\varepsilon^2 \sigma_i^2}{\lambda - 1}\right); \\ (\kappa_i^*, \rho_i^*) = f_i^*(b_i) = \left(-\frac{\tilde{\theta}\alpha\beta(\lambda - 1)}{(\phi + \tilde{\theta}\beta^2)\lambda\varepsilon}, -\frac{\tilde{\theta}\alpha\beta\mu_i}{(\phi + \tilde{\theta}\beta^2)\lambda}\right)$$

Corollary 2

Let $b_1 \triangleq \mathcal{N}(\mu_1, \sigma_1^2)$ with *bounded* mean and variance. For the stationary SPE in pure strategies, the expected average reward per stage in steady state is *independent* of the initial belief:

$$\lim_{N \to \infty} \frac{V_1^N(b_1)}{N} = -\hat{\theta}\omega^2.$$

Theorem 3

Let $N \ge 2$, $\varepsilon' < 0 < \varepsilon$, and $\check{\theta}_{N+1} = 0$. Then for $1 \le i \le N$,

$$\check{\theta}_i = \theta_i + \check{\theta}_{i+1}\alpha_i^2 - (\check{\theta}_{i+1} - \tilde{\theta}_{i+1})\alpha_i^2 \frac{\lambda - 1}{\lambda}.$$

There is a continuum of SPEs in behavioral strategies. Each SPE in the *i*-th stage consists of a behavioral strategy g_i^* and a pure strategy f_i^* satisfying

$$\mathbb{S}(g_i^*|b_i) \triangleq \left\{ (\pi_i, \delta_i^2) : \pi_i \neq 0, \varepsilon' \leq \pi_i \leq \varepsilon, \delta_i^2 = \frac{\pi_i^2 \sigma_i^2}{\lambda - 1} \right\}$$
$$\begin{aligned} ||\mathbb{S}(g_i^*|b_i)|| \geq 2; \\ E_{g_i^*}(\Pi_i) = 0; \\ (\kappa_i^*, \rho_i^*) = f_i^*(b_i) = \left(0, -\frac{\tilde{\theta}_{i+1}\alpha_i\beta_i\mu_i}{\phi_i + \tilde{\theta}_{i+1}\beta_i^2}\right). \end{aligned}$$

Corollary 3

Let $\varepsilon' < 0 < \varepsilon.$ For any SPE in behavioral strategies, we have

$$V_i^N(b_i) = -\tilde{\theta}_i \mu_i^2 - \check{\theta}_i \sigma_i^2 - \sum_{j=i+1}^N \check{\theta}_j \omega_{j-1}^2.$$

Observations

- It is sufficient for the agent to use a pure strategy.
- Although the adversary cannot use $\pi_i = 0$, the behavioral strategy g_i^* needs to achieve zero-mean of the random coefficient Π_i .
- A rational adversary will always use a manipulation with the largest variance.
- The value function V_i^N consists of two separable terms of μ_i and σ_i^2 .
- Stronger adversary \Rightarrow The value function of an SPE in behavioral strategies \leq The value function of a pure strategy SPE.

 \bullet Define the mapping $J:\mathbb{R}^2_{\geq 0}\to\mathbb{R}^2_{\geq 0}$ as

$$J(x,y) = \left(\theta + \frac{\phi \alpha^2 x}{\phi + \beta^2 x}, \theta + \alpha^2 x \frac{\lambda - 1}{\lambda} + \alpha^2 y \frac{1}{\lambda}\right)$$

Proposition 3

Let $\lambda > \alpha^2$. Then the mapping J admits a least fixed point $(\tilde{\theta}, \check{\theta}) \in \mathbb{R}^2_{\geq 0}$, for which

$$\lim_{n \to \infty} J^n(0,0) = J(\tilde{\theta}, \check{\theta}) = (\tilde{\theta}, \check{\theta}).$$

Theorem 4

Let $\lambda > \alpha^2$, $\varepsilon' < 0 < \varepsilon$, and $N \to \infty$. Then the ALQG game of the time-invariant model has a stationary SPE in behavioral strategies as: For $i \ge 1$,

$$g_i^* \left(\pi_i = \varepsilon', \, \delta_i^2 = \frac{\varepsilon'^2 \sigma_i^2}{\lambda - 1} \middle| b_i \right) = \frac{\varepsilon}{\varepsilon - \varepsilon'}; \\ g_i^* \left(\pi_i = \varepsilon, \, \delta_i^2 = \frac{\varepsilon^2 \sigma_i^2}{\lambda - 1} \middle| b_i \right) = -\frac{\varepsilon'}{\varepsilon - \varepsilon'}; \\ (\kappa_i^*, \rho_i^*) = f_i^*(b_i) = \left(0, -\frac{\tilde{\theta} \alpha \beta \mu_i}{\phi + \tilde{\theta} \beta^2} \right).$$

Corollary 4

Let $b_1 \triangleq \mathcal{N}(\mu_1, \sigma_1^2)$ with *bounded* mean and variance. For the stationary SPE in behavioral strategies, the expected average reward per stage in steady state is

$$\lim_{N \to \infty} \frac{V_1^N(b_1)}{N} = -\check{\theta}\omega^2.$$

- Theorem 5: Let $N \ge 2$. If $0 = \varepsilon' < \varepsilon$ or if $\varepsilon' < \varepsilon = 0$, there is no SPE for the ALQG game.
- Theorem 6: Let N = 2. If 0 < ε' < ε or if ε' < ε < 0, there is a unique SPE in behavioral strategies for the ALQG game: For any belief b₁ ≜ N(μ₁, σ₁²),

$$g_{1}^{*}\left(\pi_{1}=\varepsilon', \delta_{1}^{2}=\frac{\varepsilon'^{2}\sigma_{1}^{2}}{\lambda-1} \middle| b_{1}\right) = \frac{\varepsilon}{\varepsilon'+\varepsilon};$$

$$g_{1}^{*}\left(\pi_{1}=\varepsilon, \delta_{1}^{2}=\frac{\varepsilon^{2}\sigma_{1}^{2}}{\lambda-1} \middle| b_{1}\right) = \frac{\varepsilon'}{\varepsilon'+\varepsilon};$$

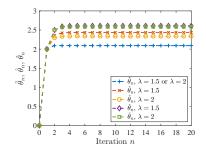
$$\kappa_{1}^{*}=f_{1}^{*}(b_{1}) = \frac{-\theta_{2}\alpha_{1}\beta_{1}E_{g_{1}^{*}}(\Pi_{1})\sigma_{1}^{2}}{(\phi_{1}+\theta_{2}\beta_{1}^{2})\left(E_{g_{1}^{*}}(\Pi_{1}^{2})\left(\mu_{1}^{2}+\frac{\lambda}{\lambda-1}\sigma_{1}^{2}\right)-E_{g_{1}^{*}}^{2}(\Pi_{1})\mu_{1}^{2}\right)};$$

$$\rho_{1}^{*}=f_{1}^{*}(b_{1}) = -E_{g_{1}^{*}}(\Pi_{1})\mu_{1}\kappa_{1}^{*}-\frac{\theta_{2}\alpha_{1}\beta_{1}\mu_{1}}{\phi_{1}+\theta_{2}\beta_{1}^{2}};$$

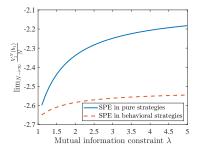
$$V_{1}^{2}(b_{1}) = -\left(\theta_{1} + \theta_{2}\alpha_{1}^{2} - \frac{\theta_{2}^{2}\alpha_{1}^{2}\beta_{1}^{2}}{\phi_{1} + \theta_{2}\beta_{1}^{2}}\right)\mu_{1}^{2} - \theta_{2}\omega_{1}^{2} - (\theta_{1} + \theta_{2}\alpha_{1}^{2})\sigma_{1}^{2} + \frac{\theta_{2}^{2}\alpha_{1}^{2}\beta_{1}^{2}E_{g_{1}^{*}}^{2}(\Pi_{1})\sigma_{1}^{4}}{(\phi_{1} + \theta_{2}\beta_{1}^{2})\left(E_{g_{1}^{*}}(\Pi_{1}^{2})\left(\mu_{1}^{2} + \frac{\lambda}{\lambda - 1}\sigma_{1}^{2}\right) - E_{g_{1}^{*}}^{2}(\Pi_{1})\mu_{1}^{2}\right)}.$$

Time-invariant LQG model parameters

Parameter	μ_1	σ_1^2	α	β	ω^2	θ	ϕ
Value	0	1	-0.5	-1.5	1	2	1



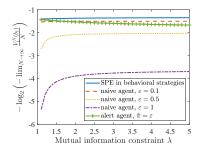
 $\tilde{\theta}_n$, $\hat{\theta}_n$, $\tilde{\theta}_n$, $\tilde{\theta}_n$ computed as $L^n(0,0)$ and $J^n(0,0)$ v.s. the number of iterations n, for $\lambda = 1.5$ and $\lambda = 2$ ($\lambda > \alpha^2$).



Expected average reward per stage v.s. mutual information constraint λ , for stationary SPEs in pure strategies and behavioral strategies.

Numerical results

- Naive agent: Unaware of the adversary and take the optimal LQG strategy
- Alert agent: Assume an adversarial strategy and take the best response



Expected average reward per stage for stationary SPE in behavioral strategies, that for a naive agent, and that for an alert agent v.s. mutual information constraint λ .

Summary

- Adversarial LQG game
 - Strategic interaction
 - Asymmetric information
 - System dynamics
- Subgame perfect equilibria
 - Pure strategy SPE
 - Behavioral strategy SPE
- Improvement by considering strategic interactions
- Future work
 - Non-scalar state dynamic system
 - Relax the assumption that the adversarial strategy is revealed to the agent after each stage

Summary

- Adversarial LQG game
 - Strategic interaction
 - Asymmetric information
 - System dynamics
- Subgame perfect equilibria
 - Pure strategy SPE
 - Behavioral strategy SPE
- Improvement by considering strategic interactions
- Future work
 - Non-scalar state dynamic system
 - Relax the assumption that the adversarial strategy is revealed to the agent after each stage

Thank you for your attention!